263

Calibrator/Source with GPIB Interface

The Model 263 Calibrator/Source is a secondary standard for use when calibrating electrometers and picoammeters (or wherever precise low current, high resistance, voltage, or charge is needed). Designed for use as a multifunction calibrator/ source, the Model 263 can source current, resistance, voltage, and charge. A built-in voltage source provides $5 \mu \mathrm{~V}$ to 20 V . Where more than 20 V is required, the Model 263 can switch up to 200 V from an external voltage source to its output terminals.

Source Current/Charge Actively or Passively

The Model 263 is capable of sourcing current or charge either actively or passively. If the voltage burden is small or known, the Model 263 can be operated as a passive source (V / R mode), whereby offset errors associated with the lower current ranges will be reduced. If the voltage burden is large or unknown, the Model 263 can be operated as an active current source; its current output will be constant, but larger offset errors will result on the lower current ranges.

- 10fA to 20mA
- $15 \mu \mathrm{~V}$ to 20 V
- $50 f \mathrm{C}$ to $\mathbf{2 0 \mu C}$
- 1Ω to $100 \mathrm{G} \Omega$
- IEEE-488 Interface
- Easy to use and maintain
- Secondary calibration standard

Ordering Information

263 Calibrator/Source with IEEE-488 Interface

This product is available with an Extended Warranty.

Accessories Supplied
7024-3 Low Noise Triax Cable, Instruction Manual

Precision Resistance Standards

The Model 263 includes nine precision resistors from $10^{3} \Omega$ to $10^{11} \Omega$ in decade steps. The actual calibration value of these high stability resistors is displayed as each range is selected. When generating low currents or displaying high megohm resistance values, the Model 263 uses an internal temperature measuring circuit to adjust low currents and high resistance values for any changes in ambient temperature. This results in accurate, reliable readings you can trust, free from the error associated with large temperature coefficients.

Easy and Convenient to Use

The Model 263 has been designed for easy pushbutton operation. All functions, ranges, and settings can be entered from the front panel. In addition, for automated applications, the Model 263 comes with an IEEE-488 bus interface. All front panel features are programmable.
A calibration certificate is furnished with each Model 263. Certification traceable to the National Institute of Standards and Technology and recalibration are also optionally available.

ACCESSORIES AVAILABLE

TEST LEADS

6011 Input Leads, 2-Slot Male Triax to Alligator Clips, 1.5 m (5 ft)

6011-10 Input Leads, 2-Slot Male Triax to Alligator Clips, 3m (10 ft)

CABLES

7007-1 Shielded IEEE-488 Cable, 1 m (3.3 ft)
7007-2 Shielded IEEE-488 Cable, 2m (6.6 ft)
7008-3 IEEE-488 Digital Cable, 0.9 m (3 ft)
7008-6 IEEE-488 Digital Cable, 1.8 m (6 ft)
7024-3 Low Noise Triax Cable, 0.9 m (3 ft)
7024-10 Low Noise Triax Cable, 3 m (10 ft)

RACK MOUNT KITS
10191 Single Fixed Rack Kit
10192 Dual Fixed Rack Kit
4288-4 Rack Mount Kit
ADAPTERS
6146 Triax Tee Adapter
6147 2-Slot Male Triax to Female BNC Adapter
6172 2-Slot Male to 3-Lug Female Triax Adapter

AMPS V/R (Passive)			ACCURACY ${ }^{1}$ $\pm(\%$ setting + offset) $18^{\circ}-28^{\circ} \mathrm{C}$			TEMPERATURE COEFFICIENT$\begin{gathered} \pm(\% \text { setting }+ \text { offset }) /{ }^{\circ} \mathrm{C} \\ 0^{\circ}-18^{\circ} \mathrm{C} \text { \& } 28^{\circ}-50^{\circ} \mathrm{C} \end{gathered}$				OUTPUT RESISTANCE		
RANGE	STEP SIZE		Days		Year							
pA	50 aA	0.375	+ 10 fA	0.425	+ 10	$f \mathrm{f}$	0.04	+	fA		00 G	
20 pA	500 aA	0.325	$+10 \mathrm{fA}$	0.375	$+10$	fA	0.04	+	fA		00 G	$G \Omega$
200 pA	$f \mathrm{~A}$	0.20	+ 30 fA	0.25	+ 30	fA	0.01	+	fA		10 G	G Ω
2 nA	50 fA	0.0625	+ 100 fA	0.065	+ 100	fA	0.01	+ 30	fA			G Ω
20 nA	500 fA	0.0625	$+1 \mathrm{pA}$	0.065	+	pA	0.0035	+ 100	fA		00 M	
200 nA	5 pA	0.035	$+10 \mathrm{pA}$	0.035	$+10$		0.0025	+ 1	pA		10 M	$\mathrm{M} \Omega$
$2 \mu \mathrm{~A}$	50 pA	0.025	$+100 \mathrm{pA}$	0.025	+ 100		0.0025	+ 10	pA		1 M	$\mathrm{M} \Omega$
$20 \mu \mathrm{~A}$	500 pA	0.025	$+1 \mathrm{nA}$	0.025	$+1$	nA	0.0025	+ 100	pA		00 k	
$200 \mu \mathrm{~A}$	5 nA	0.025	$+10 \mathrm{nA}$	0.025	$+10$		0.0025	$+1$	nA			
2 mA	50 nA	0.025	$+100 \mathrm{nA}$	0.025	+ 100		0.0025	$+10$			10 k	
20 mA	500 nA	0.15	$+\quad 1 \mu \mathrm{~A}$	0.15	+ 1		0.0025	+ 100	nA			$\mathrm{k} \Omega$

${ }^{1}$ Assumes $<100 \mu \mathrm{~V}$ compliance (voltage burden).

COULOMBS V/R (Passive)

${ }^{1}$ Load resistance $>100 \mathrm{k} \Omega$.
RESPONSE TIME: <0.5 second to rated accuracy.
OUTPUT RESISTANCE: $<1 \Omega$.
SHORT CIRCUIT CURRENT LIMIT: <75mA.
NOISE: $<25 \mathrm{ppm}$ of range peak to peak in a 0.1 Hz to 10 Hz bandwidth.

AMPS (Active)
Accuracy is the same as V / R, except change $\%$ setting on the 20 mA range to 0.035% and change the offsets per the following table:

RANGE	ACCURACY \pm offset	TEMPERATURE COEFFICIENT \pm offset $/{ }^{\circ} \mathrm{C}$
2 pA	100 fA	30 fA
20 pA	100 fA	30 fA
200 pA	120 fA	30 fA
2 nA	200 fA	No change

OUTPUT RESISTANCE: $>10^{14} \Omega$ on 2 nA range and above.
OUTPUT CAPACITANCE: < 50 pF .
OUTPUT LOAD: Output load must be non-inductive.
COMPLIANCE VOLTAGE: $>12 \mathrm{~V}$. Front panel OPERATE light flashes when compliance is reached.
MAXIMUM OPEN CIRCUIT VOLTAGE: $<45 \mathrm{~V}$ for the 2 mA and 20 mA ranges; $<25 \mathrm{~V}$ for the $2 \mathrm{pA}-200 \mu \mathrm{~A}$ ranges.
RESPONSE TIME: <0.5 second to rated accuracy for the $2 \mathrm{nA}-20 \mathrm{~mA}$ ranges; <5 seconds for the $2 \mathrm{pA}-200 \mathrm{pA}$ ranges.
PREAMP OUTPUT: Maximum Load Current: 5 mA .
Maximum Load Capacitance: 10 nF .

OHMS NOMINAL VALUE	$\begin{gathered} \text { ACCURACY } \\ \pm(\% \text { setting }) \\ 18^{\circ}-28^{\circ} \mathrm{C} \end{gathered}$		TEMPERATURE COEFFICIENT $\pm\left(\%\right.$ setting $/{ }^{\circ} \mathrm{C}$)
	90 Days	1 Year	$0^{\circ}-18^{\circ} \mathrm{C}$ \& $28^{\circ}-50^{\circ} \mathrm{C}$
$1 \mathrm{k} \Omega$	$0.04{ }^{1}$	$0.04{ }^{1}$	0.0005
$10 \mathrm{k} \Omega$	$0.02{ }^{1}$	$0.02{ }^{1}$	0.0005
$100 \mathrm{k} \Omega$	0.02	0.02	0.0005
$1 \mathrm{M} \Omega$	0.025	0.025	0.0005
$10 \mathrm{M} \Omega$	0.035	0.0375	0.0015
$100 \mathrm{M} \Omega$	0.065	0.07	0.0015
$1 \mathrm{G} \Omega$	0.08	0.10	0.008^{2}
$10 \mathrm{G} \Omega$	0.20	0.225	0.008^{2}
$100 \mathrm{G} \Omega$	0.375	0.40	$0.04{ }^{2}$

${ }^{1}$ After subtracting ZERO offset.
${ }^{2}$ Displayed value corrected for resistor temperature coefficient.
ZERO OFFSET: < 1Ω.
TOLERANCE OF NOMINAL VALUE: $1 \mathrm{k} \Omega-1 \mathrm{M} \Omega, 0.1 \% ; 10 \mathrm{M} \Omega, 0.2 \% ; 100 \mathrm{M} \Omega-100 \mathrm{G} \Omega$, 3%.
MAXIMUM VOLTAGE ACROSS RESISTANCE FOR RATED ACCURACY: $1 \mathrm{k} \Omega-10 \mathrm{G} \Omega$, 20V; 100G $\Omega, 100 \mathrm{~V}$

GENERAL

DISPLAY: $51 / 2$-digit numeric LEDs with appropriate decimal point and polarity indication; signed 2 -digit alphanumeric exponent.
OUTPUT CONNECTIONS: Two-lug triaxial connector for output; 5 -way binding posts for PREAMP OUT, COMMON, and EXT INPUT. All connections on rear panel.
PROGRAMS: Menu provides front panel access to IEEE-488 address, Alpha or Numeric Exponent, Digital Calibration, and Temperature Compensation selection.
MAX. COMMON MODE VOLTAGE (DC to 60 Hz sine wave): 350 V peak.
ISOLATION (Common to Chassis): $>10^{10} \Omega$ paralleled by $<500 \mathrm{pF}$.
EXT INPUT: Max. Input: 200 V peak, 100 mA peak. Series Resistance: $<1 \Omega$.
EMC: Conforms to European Union Directive 89/336/EEC.
SAFETY: Conforms to European Union Directive 73/23/EEC (meets EN61010-1/IEC 1010).
WARM-UP: 1 hour to rated accuracy.
ENVIRONMENT: Operating: $0^{\circ}-50^{\circ} \mathrm{C} ;<70 \% \mathrm{RH}$ non-condensing up to $35^{\circ} \mathrm{C}$. Storage: -25° to $+60^{\circ} \mathrm{C}$.
POWER: $105-125 \mathrm{~V}$ or $210-250 \mathrm{~V}$ (rear panel switch selected), $90-110 \mathrm{~V}$ available, $50-60 \mathrm{~Hz}, 25 \mathrm{VA}$ maximum.
DIMENSIONS, WEIGHT: 127 mm high $\times 216 \mathrm{~mm}$ wide $\times 359 \mathrm{~mm}$ deep (5 in $\times 81 / 2 \mathrm{in} \times 141 / 8 \mathrm{in}$). Net weight 3.6 kg (8.1 lbs).

